

기술소개자료

콜린-폴리 접합체 포함 자기조립 나노입자를 포함하는 약물전달용 조성물

Ⅰ 강한창 교수(가톨릭대학교 약학과)

강한창 교수(약학과) 콜린-폴리 접합체 포함 자기조립 나노입자를 포함하는 약물전달용 조성물

기술 정보

기술명	콜린 및 폴리에스터의 고분자 접합체를 포함하는 자기조립 나노입자, 이의 제조방법 및 이를 포함하는 약물전달용 조성물				
등록번호 (등록일)	-	출원번호 (출원일)	10-2023-0121647 (2023-09-13)		

연구자 소개

성명	강한창	직위	교수
소속	가톨릭대학교 성심교정 약학과	연구 분야	약제학/ 물리약학/ 약물전달/ 나노의약

기술 개요

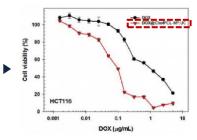
기술 개요

- 본 발명은 **콜린 및 폴리에스터의 고분자 접합체를 포함하는** 자기조립 나노입자, 이의 제조방법 및 이를 포함하는 약물전달용 조성물에 관한 것임
- 콜린은 세포의 구성, 생리활성 조절 및 매개 등 세포 내 중요기능수행에 있어 전구체 역할을 하는데, 수용성 물질로 세포막을 투과하기 어려워 콜린 수송체(choline transporter)라는 단백질과 생체에너지의 도움을 받음
- 암세포는 정상세포보다 콜린 수송체 단백질이 과발현되어 콜린의 세포 내 유입을 촉진시켜 이를 세포 성장 및 기능 유지에 활용함
- 본 발명의 신규 콜린-폴리(입실론-카프로락톤 접합체(Choline-Poly(ε-caprolactone) conjugate)를 포함하는 자기조립 나노입자는 콜린의 세포 내 유입을 감소시켜, 암세포의 성장을 지연 및 억제시킴

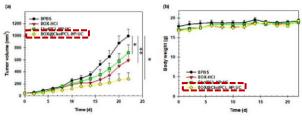
기술 개발 단계

개발 단계	기초이론 /실험 /성능평가 시제품인증 표준화 사업화
효과	암 세포 성장 지연 및 억제

기술의 특장점


암세포 사멸 효과를 확인한 바, 암 질환 치료제에 활용 가능

콜린-폴리 접합체 포함 자기조립 나노입자


- 본 발명은 일시적으로 콜린 수송체가 콜린을 세포 내로 유입시키지 못하도록 나노입자 표면에 콜린을 화학적으로 수식한 것으로, 친수성 콜린과 소수성 폴리(입실론-카프로락톤)로 된 양친매성 접합체를 자기조립시켜 나노구조체를 만든 것
- 따라서, 나노입자 표면에 수식된 콜린이 암세포의 콜린 수송체와 특이적으로 결합하여 **콜린의 세포 내 유입을 감소시켜 암세포의** 성장을 지연 및 억제시키고, 사멸에 이르게 함

암세포 사멸 효과

대장암 세포(HCT116)에 소수성 항암제인 독소루비신(DOX)이 봉입된 본 발명의 나노입자 DOX@CholPCL-NP:UC 처리에 따른 암세포 사멸능 평가

* DOX보다 10배 더 우수한 암세포 사멸능

▲ 대장암 유발 마우스 모델에서 DOX@CholPCL-NP:UC의 항암 효과 및 체중 변화

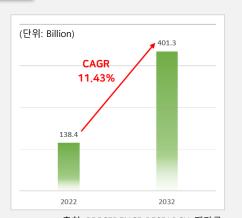
암성장 억제 효과

- * DOX·HCI보다 2.10배 높은 항암효과
- * 체중 변화가 거의 관찰되지 않아 심각한 독성이 없음을 확인

기술 응용분야

응용분야

- 항암제
- 약물 전달 시스템


시장 현황

약물전달시스템 및 항암제 시장

출처: PRECEDENCE RESEARCH 재가공

<글로벌 약물전달시스템 시장 규모 및 전망>

출처: PRECEDENCE RESEARCH 재가공

<글로벌 항암제 시장 규모 및 전망>

- 전 세계 약물전달시스템 시장은 2022년 2,698억 달러에서 연평균 성장률 4.56%로 성장하여 2032년에는 4,214억 달러에 이를 것으로 예상됨
- 전 세계 항암제 시장은 2022년 1,384억 달러에서 연평균 성장률 11.43%로 성장하여 2032년에는 4,013억 달러에 이를 것으로 예상됨
- 인구 고령화로 인한 제약산업의 성장과 맞물려 약물전달시스템의개발수요도함께 증가하는 추세
- 암 환자 수 증가, 선진국 시장에서의 항암치료에 대한 꾸준한 주도, 저소득 시장에서의 항암치료에 대한 접근 확대 등이 계속해서 항암제 시장 성장에 영향을 미칠 것으로 전망됨

추가 기술 정보

거래유형	기술매매, 라이선스, 기술협력, 기술지도		
기술이전시 지원사항	노하우 전수 등	명세서 정보	-

Contact point

가톨릭대학교 산학협력단

윤태진 차장/ Tel: 02-2164-4738/ E-mail: taejin@catholic.ac.kr

김아람 사원/ Tel: 02-2164-6504/ E-mail hold0919@catholic.ac.kr

